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Rh,(S-DOSP),-catalyzed C-H activation to N,N-dimethylanilines is described. A double C-H activation was possible by using an excess of
methyl aryldiazoacetate, and this provided a very direct approach to C,-symmetric anilines.

In recent years, there has been considerable interest inment! In this paper, we describe the application of this

developing practical methods for achieving-B8 activa-
tion.>? Such methods would offer exciting new strategies
for the construction of complex synthetic targets. We have

chemistry to the asymmetric synthesis Gf-symmetric
anilines (Scheme 1).

recently shown in a series of papers that intermolecutariC | NI

insertion by rhodium-carbenoids represents a general method

for asymmetric C-H activation® This approach can be

considered as a surrogate to some of the classic reactions of

organic synthesis such as the aldol reactitime Mannich
reaction? the Michael reactiofi,and the Claisen rearrange-
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Intermolecular C—H insertion by rhodium carbenoids
derived from ethyl diazoacetate was demonstrated to be a
feasible reaction 30 years a§@n the basis of these early
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Lett.2001, 3, 1773. (c) Davies, H. M. L.; Venkataramani, @&gew. Chem.,
Int. Ed.2002,41, 2197.
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studies, however, the reaction was not considered to be o

significant synthetic utility because the carbenoids displayed Scheme 2

poor chemoselectivit§ The breakthrough in this chemistry OMe

came about with the development of donor/acceptor- OMe  Nexy-CO:Me

substituted carbenoids because these carbenoids are much Rha(S-DOSP), ‘ B
more chemoselective than the traditional carbenoids lacking +  oc O
the donor group?® Classic examples of donor/acceptor- _
substituted carbenoids are those derived from aryldiazo- Br T3 yield Eo,Me
acetated, which undergo highly enantioselective reactions 3 4 5

when RR(S-DOSP) (2) is used as catalyst (Figure 3LA

delicate balance of electronic and steric effects controls the SN Neg ACOMe ~ COzMe
remarkable chemoselectivity displayed by these carbenoids. Rhy(5-DOSP),

C—H insertion is preferred at sites that stabilize positive + rt

charge buildup on the carbdnThe rhodium-carbenoid, B 67% yield b
however, is sterically very demanding, and steric issues often 6a 4 53% ee 7a

dominate over the electronic preference.

_ reactions with donor/acceptor-substituted carbenoids if the

aromatic ring is sterically encumbered (at least 1,4-disub-

CO,Me wo Rh stituted)%l'lz3,5-DimethyIN,N-dimethylanili_ne Q) would be
N N - | _expected to be a go_od substrate foﬂﬂ:actlvanor_l_because_
Ar SO O-TRh it should be too sterically crowded for electrophilic aromatic
2 4 substitution. As predicted, the K8&DOSP)-catalyzed reac-
AT = P-CratasCefa tion of 8 with 4 was very efficient, resulting in the formation
1 2 (Rhy(S-DOSP)4) of the C—H insertion producd in 67% yield and 64% ee
Figure 1. Carbenoid precursor and catalyst. (Scheme 3).
The initial discovery that led to this current paper arose
during studies on benzylic-€H activation''12 A Hammett Scheme 3
study had shown that electron-donating substituents in the ~N7 _ ~N CO:Me
aromatic ring strongly enhance the-€ activation chemistry 4(05equiv)
at the benzylic positiof A very impressive example is the Rhy(S-DOSP), /@\
Rh(S-DOSP)-catalyzed reaction gi-methylanisole §) with it \
methylp-bromophenyldiazoacetaté)( which results in the 67% yield °
formation of5 in 73% yield and 80% ee (Scheme2)On 8 B4% ee

the basis of this result, it was anticipated thialN-dimethyl-
p-toluidine (6a) would be an even better substrate for
benzylic C-H activation. Indeedéa undergoes a very clean
C—H activation with4, but unexpectedly, the product that
is formed is the regioisométa (67% yield, 53% ee), arising
from C—H insertion into theN-methyl group®® Intrigued by
the efficiency of the formation ofa, we have undertaken a
systematic study on the-€H activation chemistry oN,N-
dimethylanilines.

We have previously demonstrated that electron-rich aro-
matic rings are not susceptible to electrophilic substitution

To explore more thoroughly the effect of steric hindrance
of the aromatic ring toward electrophilic substitution, the
reaction ofN,N-dimethylim-toluidine (L0) was examined.
The Rh(S-DOSP)-catalyzed reaction 0f0 with 4 gave a
2:3 mixture of the CG-H insertion productll and the
electrophilic substitution produdf? in a combined yield of
60% (Scheme 4)11was produced in 64% ee, whil® was
essentially racemic. The ratio of the products is very
dependent on the catalyst used because the same reaction
catalyzed by rhodium octanoate gave a 4:1 mixturd bf

(7) Davies, H. M. L.; Ren, P.; Jin, @rg. Lett.2001,3, 3587. and12 (30% combined yield).
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Eeng-'%A908l4§g,t§|4fégé) Egmgéceau, A Noels, A. F.; Hubert, A. J.; Teyssie, some of the G-H activation productl4 is also formed and
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York, 1998, pp 112162. deficient catalysts enhance electrophilic substitution over
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(12) Davies, H. M. L.; Jin, Q.; Ren, P.; Kovalevsky, A. ¥.0Org. Chem. from the predictive model for EH activation catalyzed by R{&DOSP).
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catalyst 11:12 11412, yield, % 11, ee, %
Rh,(S-DOSP), 2:3 60 64 substrates, giving the -€H activation products/ in 51—
Rho(OOct),  4:1 30

72% yield and 53 71% ee. A most notable example is the
reaction with thep-(silyloxymethylene) derivativéf because

o ) C—H activation cleanly occurs at tié¢-methyl sites in favor

instead of a hydrocarbon solvent. The optimum conditions
for the formation of the electrophilic substitution product

15 are Rh(S-DOSP) as the catalyst and dichloromethane

as the solvent.

Table 1. C—H Activation of N,N-Dimethylanilines

N ~ CO,Me
4 (0.5 equiv)
Scheme 5 Rh,(S-DOSP),
M 1 mol %
SN ~\ coMe COMe R ( ”r‘t" %) i Br
~
Rh(ll) catalyst ’T[ Br - e "y
solvent, rt Br
a Me 67 53
13 14
15 b t-Bu 60 58
catalyst solvent 14:15 14, yield, % 15, yield, % c F 70 58
CHCH,C(CHg) d Br 72 56
Rh,(S-DOSP) 7:93 4 64
Rho(S-DOSP), CHsCl- . 1igg : N e CO,Me 51 7
Rh,(TFA), CHgCH,C(CHg)s 3:97 - 45 f CH,OTBS 70 61
Rha(OOct),  CHaCHC(CHo)e 3565 9 15

The high reactivity of the anilin&l-methyl group toward

Over the years we have described several examples of howC—H activation was a promising indication that,N-
the product outcome is dependent on subtle solvent anddimethylanilines might be susceptible to double i€ acti-
catalyst effectd* Hydrocarbon solvents and electron-rich vation. We had previously reported tétBoc-pyrrolidines
catalysts favor reactions occurring through relatively un- Were capable of double-€H activation, but 6 equiv of diazo
charged intermediates/transition states, while polar solventscompound and elevated temperatures were required to
and electron-deficient catalysts favor reactions occurring via achieve such a transformatigtiThe double €-H activation
zwitterionic intermediates. The catalyst and solvent effects Of 3,5-dimethyIN,N-dimethylaniline 8) was readily achieved
observed here are consistent with this interpretation becausd?y Simply altering the stoichiometry of the reaction by using
the C—H activation is considered to involve a concerted 2-2 equiv of the diazo compound and 2 mol % of the catalyst.

the aromatic substitution occurs via the zwitterionic inter- Productl8and the meso diastereontd was formed, from

mediate17 (Figure 2)!5 Presumably, the rhodium in7is ~ Which 18 was obtained in 57% yield (Scheme 6). Gratify-
released prior to the proton transfer, as this would explain ingly, the C;-symmetric produc8 was formed in 95% ee,
why the electrophilic substitution products are formed
without asymmetric induction.

The reaction can be extended to a rang@-siibstituted Scheme 6
N,N-dimethylanilines, and the results are summarized in MeO,C CO,Me MeO,C CO,Me
Table 1. The reaction is fairly uniform over a range of 4 (2.2 equiv)

N
' /@\
Tetrahedron Lett.1990, 31, 6299. (b) Davies, H. M. L.; Clark, T. J.; Br Br
Kimmer, G. F.J. Org. Chem1991,56, 6440. (c) Davies, H. M. L.; Clark, rt 19
T. J. Tetrahedron1994,50, 9883. h
(15) Davies, H. M. L.; Smith, H. D.; Hu, B.; Klenzak, S. M.; Hegner, F. 57% yield, 95% ee 19% yield
J.J. Org. Chem1992,57, 6900.

T
| Jol
. o Rh,(S-DOSP),
(14) (a) Davies, H. M. L.; Saikali, E.; Clark, T. J.; Chee, E. H. (2 mol %) Q
Br Br
8
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Table 2. Double C—H Activation ofN,N-Dimethylanilines

~N7 MeOZC\/\ CO,Me
4(2-3 equiv) i N
Rh,(S-DOSP), @
(2 mol %)
it Br R Br
20
substrate R product yield, % ee, %
6a? Me 20a 41 91
6bb t-Bu 20b 55 91
6cb F 20c 60 89
6db Br 20d 60 90
6ebe CO;Me 20e 54 85
6fd CH,OTBS 20f 42 92

a performed with 2 equiv of. P Performed with 3 equiv of. ¢ Reaction
was conducted at 58C. 9 Performed with 2.5 equiv of.

which indicates that the second—®& activation occurred
with the same sense of asymmetric induction as the first
C—H activation. Consequently, th&é-symmetric product
18 is produced with much higher ee than the initiat 8
activation produc®.

The reaction can be extended to the synthesis of a series'\l

of C,-symmetric aniline®0 as summarized in Table 2. The
asymmetric induction is uniformly high (882% ee).Cs-

symmetric amines have wide utility as chiral ligands in
asymmetric synthesi$,and the very rapid access to a novel

(16) (a) Bennani, Y. L.; Hanessian, Shem. Rev1997,97, 3161. (b)
Whitesell, J. K.Chem. Re»1989,89, 1581. (c) Takahata, H.; Kouno, S.;
Momose, T.Tetrahedron: Asymmetr§995,6, 1085.
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class of C-symmetric amines underscores the synthetic
potential of the C—H activation chemistry.

It has been generally assumed that the success of the
intermolecular C-H activation chemistry is due to the unique
reactivity profile of donor/acceptor-substituted carbendids.
To test this hypothesis, the KB-DOSP)-catalyzed reaction
of two of the traditional diazo compounds, ethyl diazoacetate
and dimethyl diazomalonate, wityN-dimethylp-toluidine
(6a) was examined. It was anticipated that a very different
product outcome would result, but in fact neither ethyl
diazoacetate nor dimethyl diazomalaonate was effectively
decomposed by R[5-DOSP) in the presence dda.

In summary, this paper further demonstrates the re-
markable chemoselectivity of the-€ activation chem-
istry of donor/acceptor-substituted carbenoidgN-Di-
methylanilines are very favorable substrates when the
aromatic ring is sterically protected toward electrophilic
substitution. The double €H activation ofN,N-dimethyl-
anilines represents a very direct approach for the synthesis
of structurally elaborateC,-symmetric anilines. Further
studies are in progress to determine the utility of derivatives
of theseC,-symmetric anilines as ligands for asymmetric
synthesis.
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